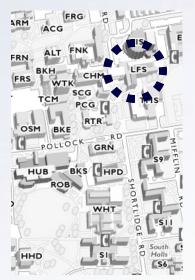

Kirk Stauffer

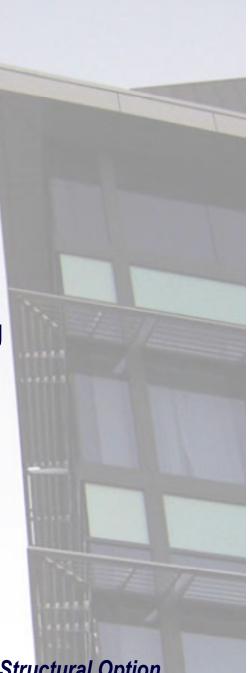
BAE / MAE - Structural Option Senior Thesis Project

Life Sciences Building The Pennsylvania State University University Park Campus

- Building Background
- Existing Building Structure
- Thesis Proposal
- Structural Redesign: Lateral
- Structural Redesign: Diaphragms
- Structural Redesign: Architectural Impacts
- Structural Redesign: Cost / Schedule Impacts
- Conclusions



- Building Background
- Existing Building Structure
- Thesis Proposal
- Structural Redesign: Lateral
- Structural Redesign: Diaphragms
- Structural Redesign: Architectural Impacts
- Structural Redesign: Cost / Schedule Impacts
- Conclusions

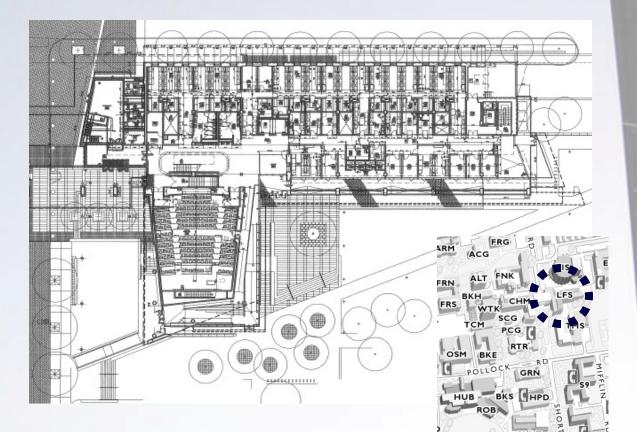

Building Background – Introduction

- Classrooms, Offices, Laboratories
- Basement + 5 Floors + Mechanical Penthouse
- Located on PSU University Park Campus
- Gateway to the Sciences with Chemistry Building

Life Sciences Building

Building Background – Building Statistics

- 154,000 GSF (Basement + 5 Floors + Penthouse)
- Maximum Height Above Grade = 97'
- Maximum Height Above Seismic Base = 83'
- Project Duration: May 1999 September 2004
- Construction Cost: \$37,790,085



Life Sciences Building

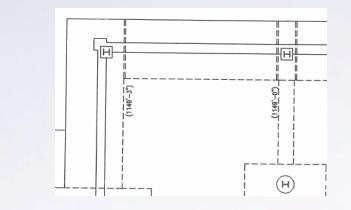
Building Background – Site Information

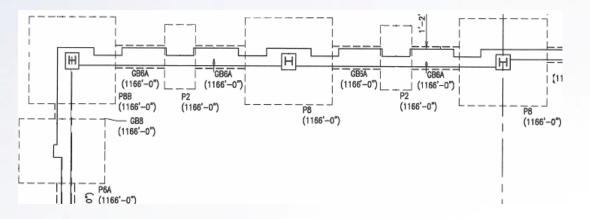
- Various finished grades surround building

Life Sciences Building

Kirk Stauffer – Structural Option

HHD

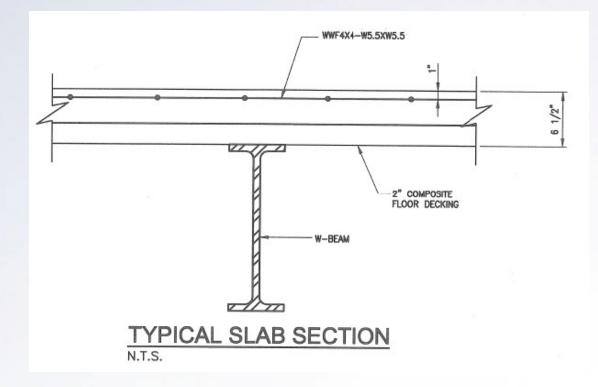

- Building Background
- Existing Building Structure
- Thesis Proposal
- Structural Redesign: Lateral
- Structural Redesign: Diaphragms
- Structural Redesign: Architectural Impacts
- Structural Redesign: Cost / Schedule Impacts
- Conclusions

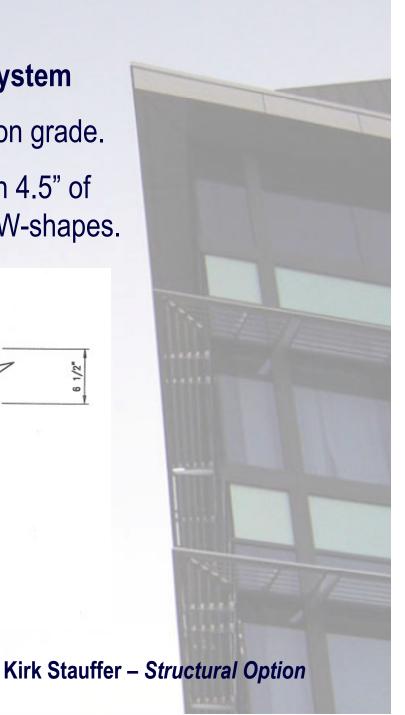

Life Sciences Building

Existing Building Structure – Foundation

- Combination of several foundation systems.

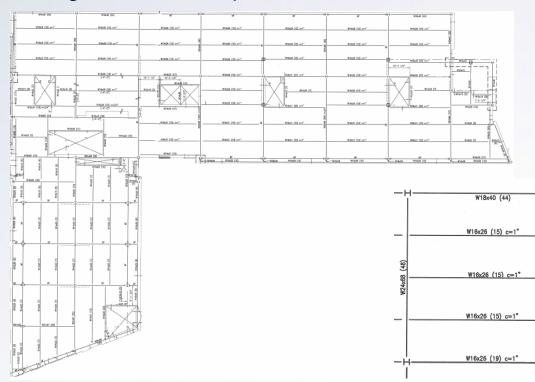
Steel H-Piles, Pile Caps, Grade Beams




Life Sciences Building

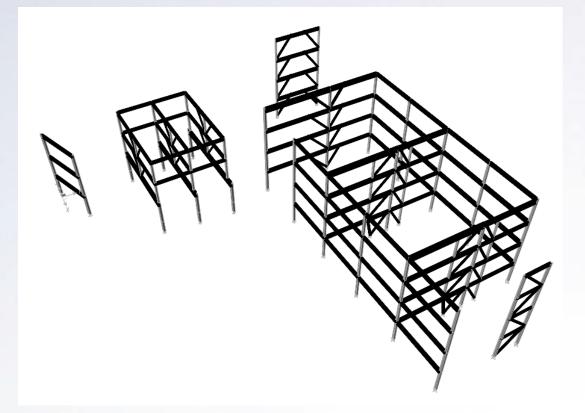
Spread Footings

Existing Building Structure – Gravity System


- Basement and ground floor are slab on grade.
- Typically 2" composite steel deck with 4.5" of 4000 psi concrete cover on composite W-shapes.

Existing Building Structure – Gravity System

- Typical gravity framing layout has composite steel beams with spans between 20' and 30' and a beam spacing of around 8'. Composite steel girders have spans between 20' and 40'.



Life Sciences Building

Existing Building Structure – Lateral System

- Existing lateral system was steel moment frames, eccentrically braced frames, and concentrically braced frames. 3D view below.

Existing Building Structure – Lateral System

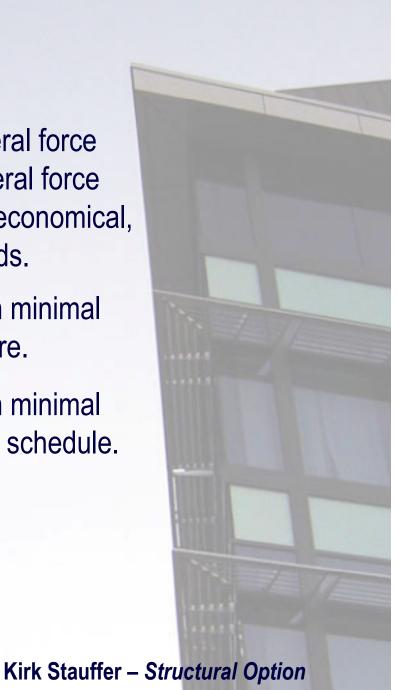
- Existing lateral system was found to be unnecessarily complicated and inefficient.
- Condensed results of Technical Assignment III – Lateral System Analysis are shown below.

From Hand Analysis:	V _{tot,e-w} = 217.11		From Hand Analysis:	Vtot,n-s = 356.11	
	Force (k)	Percentage		Force (k)	Percentage
Moment Frame 1	56.21	25.9	Braced Frame C	81.76	23.0
Moment Frame 4	58.68	27.0	Hybrid Frame C.2	0	0.0
Hybrid Frame 5.3	9.24	4.3	Hybrid Frame D.8	0	0.0
Hybrid Frame 6	8.97	4.1	Braced Frame E	17.91	5.0
Hybrid Frame 7	8.84	4.1	Braced Frame G	113.14	31.8
Moment Frame 9	12.71	5.9	Braced Frame J	88.85	25.0
TOTAL E-W FRAMES	154.65	71.2	Braced Frame K	50.48	14.2
			TOTAL E-W FRAMES	352.14	98.9
N-S Frames	62.46	28.8			
Interior Columns 2.8	33.66		E-W Frames	3.97	1.1

Life Sciences Building

- Building Background
- Existing Building Structure
- Thesis Proposal
- Structural Redesign: Lateral
- Structural Redesign: Diaphragms
- Structural Redesign: Architectural Impacts
- Structural Redesign: Cost / Schedule Impacts
- Conclusions

Thesis Proposal – Summary


- Relocate building to Seismic Design Category "D".
- Update design building code from BOCA 1996.
- Redesign lateral system to be more efficient.
- Redesign lateral system to be simpler.
- Verify gravity floor system can be left unchanged.
- Consider structural redesign architectural impact.
- Consider structural redesign cost / schedule impact.

Life Sciences Building

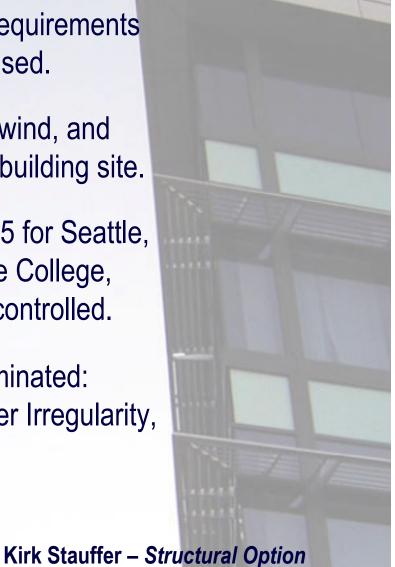
Thesis Proposal – Goals

- Replace existing wind controlled lateral force resisting system with a redesigned lateral force resisting system that is simpler, more economical, and is capable of resisting seismic loads.
- Accomplish successful redesign with minimal changes to existing building architecture.
- Accomplish successful redesign with minimal changes to building cost / construction schedule.

- Building Background
- Existing Building Structure
- Thesis Proposal
- Structural Redesign: Lateral
- Structural Redesign: Diaphragms
- Structural Redesign: Architectural Impacts
- Structural Redesign: Cost / Schedule Impacts
- Conclusions

- New site for building with SDC "D" was found at University of Washington in Seattle, Washington.

Life Sciences Building

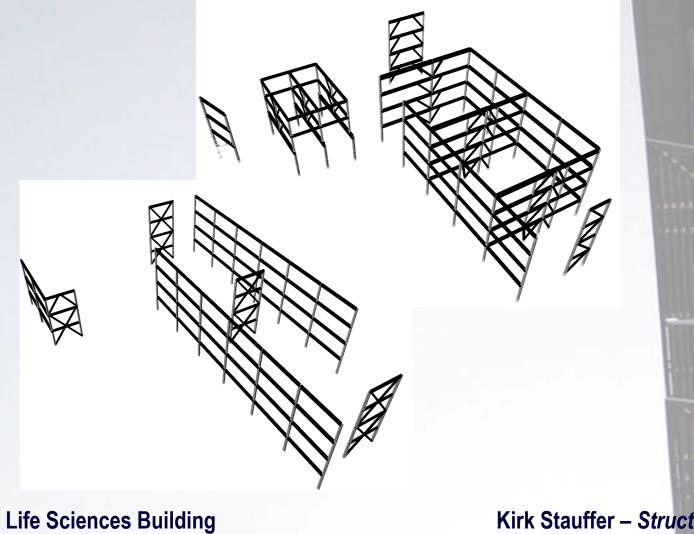

- Site Class "C"
- $S_s = 1.298$, $S_1 = .442$
- $S_{DS} = .865, S_{D1} = .400$
- Seismic Design Category "D"
- Occupancy Category "III", I = 1.25
- North South Seismic Force Resisting System: Special Steel Concentrically Braced Frames R = 6 $\Omega_0 = 2$ $C_d = 5.0$ $\rho = 1.0$
- East West Seismic Force Resisting System: Special Steel Moment Frames

R = 8 Ω_0 = 3 C_d = 5.5 ρ = 1.0

Life Sciences Building

- Materials conforming to the stricter requirements of the AISC Seismic Provisions were used.
- All loads including dead, live, snow, wind, and seismic were recalculated for the new building site.
- The basic wind speed per ASCE 7-05 for Seattle,
 Washington was less than that of State College,
 Pennsylvania seismic lateral forces controlled.

Three irregularities could not be eliminated:
 Torsional Irregularity, Reentrant Corner Irregularity,
 Weight (Mass) Irregularity.



- Modal Response Spectrum Analysis was required due to the large number of structural irregularities.
- The ETABS model was used to determine: modal participation, P-delta effects, real periods, torsional effects, force distribution, and displacements.

MODALDISPX	MODALDISPY
Uses real period T = 2.051 s	Uses real period T = .770 s
Scaled to equal $V_{Real Period} * (Cd / I)$	Scaled to equal $V_{Real Period} * (Cd / I)$
Participation = 99.99% > 90%	Participation = 99.93% > 90%
MODALFORCEX	MODALFORCEY
MODALFORCEX Uses approx. period T _a = 1.344 s	MODALFORCEY Uses approx. period T _a = .882 s

– Structural Option

Life Sciences Building

- For Special Moment Frames, beam design emphasis focused on Reduced Beam Section moment connections.

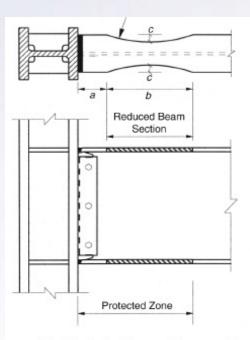
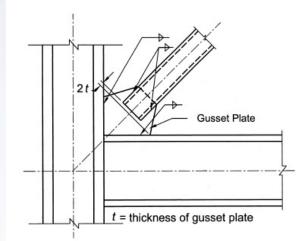


Fig. 5.1. Reduced beam section connection.

Kirk Stauffer – Structural Option

 For Special Moment Frames, column design emphasis focused on the Beam – Column Moment Ratio.


Column-Beam Moment Ratio

The following relationship shall be satisfied at beam-to-column connections:

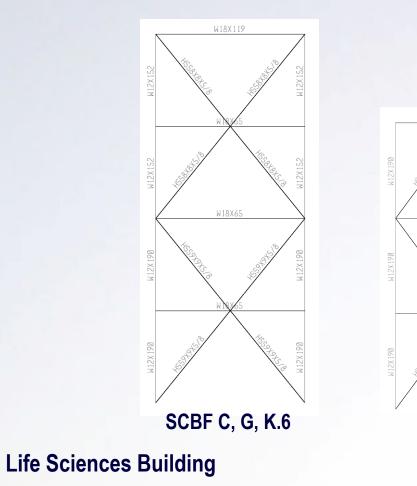
$$\frac{\Sigma M_{pc}^*}{\Sigma M_{pb}^*} > 1.0 \tag{9-3}$$

Life Sciences Building

- For Special Concentrically Braced Frames, the design emphasis was on the detailing of the gusset plates.
- Emphasis was also placed on the slenderness of the bracing.

Kirk Stauffer – Structural Option

- Typical Special Moment Frame elevations are represented below:


	W24X76		W24X76		W24X76		W24X76		W24X76		W24X76	
M12X186	W24X84	W12X170	W24X84	0/1/2/1/0	W24X84	M12X170	W24X84	W12X170	W24X84	M12X170	W24X84	W12X186
W12X106	W24X94	W12X170	W24X94	W12X170	W24X94	W12X170	W24X94	W12X170	W24X94	W12X170	W24X94	W12X106
M12X136	W24X103	H12X210	W24X103	H12X210	W24X 103	M12X210	W24X 103	W12X210	W24X103	W12X210	W24X103	W12X136
W12X136		W12X218		W12X218		M12X218		M12X218		M12X218		W12X136

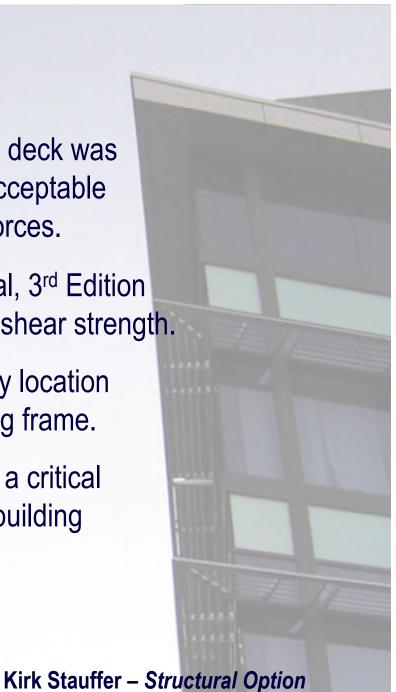
SMF 1 & 4

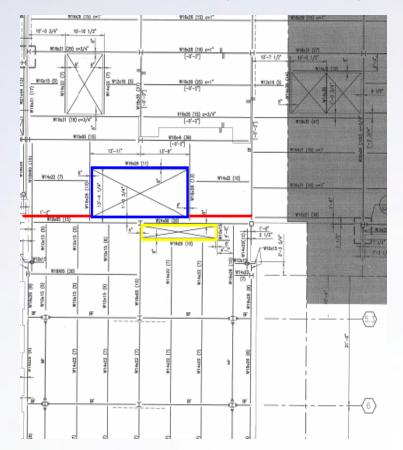
Life Sciences Building

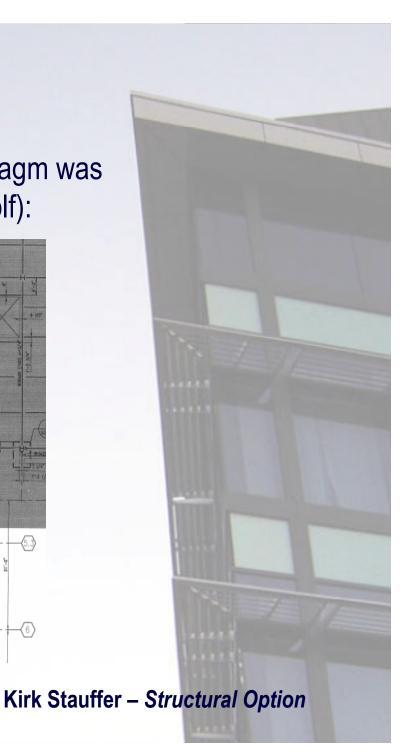
- Typical Special Concentrically Braced Frame elevations are represented below:

SCBF E

- The redesigned lateral force resisting system was designed to and met all of the requirements of:
 - ASCE 7-05
 - AISC 360-05
 - AISC 341-05
 - AISC 358-05
- The story drifts were less than the allowed 2.52"


Δ _{4,NS} = 1.6098"	Δ _{4,EW} = 1.8814"
Δ _{3,NS} = 1.5091"	Δ _{3,EW} = 1.9942"
Δ _{2,NS} = 1.5352"	Δ _{2,EW} = 1.9707"
Δ _{1,NS} = .9598"	Δ _{1,EW} = 1.4832"


- Building Background
- Existing Building Structure
- Thesis Proposal
- Structural Redesign: Lateral
- Structural Redesign: Diaphragms
- Structural Redesign: Architectural Impacts
- Structural Redesign: Cost / Schedule Impacts
- Conclusions



- The existing slab on composite steel deck was checked to verify that it would be an acceptable diaphragm for the increased seismic forces.
- The SDI Diaphragm Design Manual, 3rd Edition was used as a reference to determine shear strength.
- The diaphragm was checked at every location where it tied into a lateral force resisting frame.
- The diaphragm was also checked at a critical location at the reentrant corner of the building where an opening occurred.

- The critical location where the diaphragm was checked is illustrated below (V = 900 plf):

- After collector elements were determined to be needed and added to the SCBFs the diaphragm forces were calculated.

PENTHOUSE DIAPHRAGM

E-W Frames	%	Shear	Length	Unit Shear
SMF - 1	51.5	599.1	186.0	3220.7 plf
SMF - 4	48.5	564.2	245.5	2298.0 plf
N-S Frames				
SCBF - C	36.2	448.4	72.0	6227.6 plf
SCBF - G	29.8	369.1	144.0	2563.3 plf
SCBF - K.6	34.0	421.1	72.0	5849.1 plf

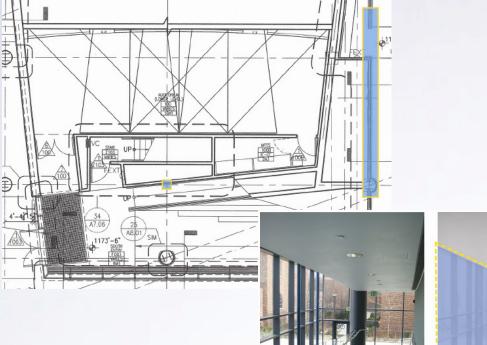
TYPICAL FLOOR DIAPHRAGM

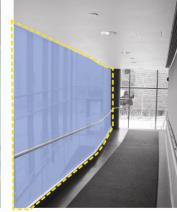
E-W Frames	%	Shear	Length	Unit Shear
SMF - 1	38.9	260.9	186.0	1402.9 plf
SMF - 4	35.3	236.8	245.5	964.5 plf
SMF - 8	25.8	173.1	57.0	3036.3 plf
N-S Frames				
SCBF - C	22.4	150.3	72.0	2087.0 plf
SCBF - E	23.7	159.0	84.7	1877.8 plf
SCBF - G	22.8	152.9	144.0	1062.1 plf
SCBF - K.6	31.1	208.6	72.0	2897.5 plf

- All forces are below the allowable unit shear of (V = 6115 plf).

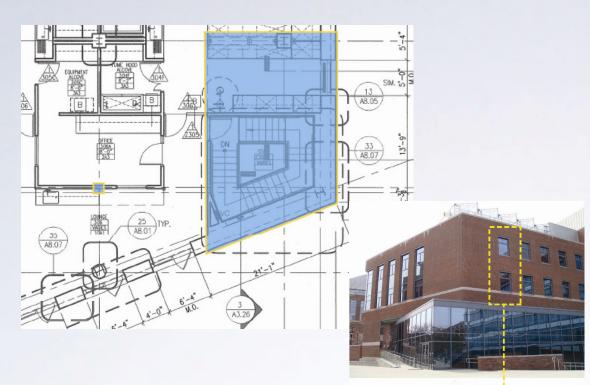
Life Sciences Building

- The final design of the diaphragm was determined to be:

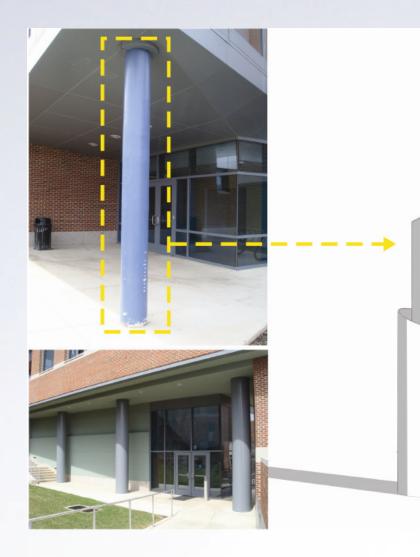

2" Composite Metal Deck, 18 gage (t = .0474") 4.5" Normal Weight Concrete Topping, f'c = 4000 psi WWF4x4 – W5.5 x W5.5 Span = 10' (maximum) 8 Side Lap Welds per Span, 5/8" Puddle or 1-1/2" Fillet 1 Structure Weld per 1' of Bearing, 5/8" Puddle



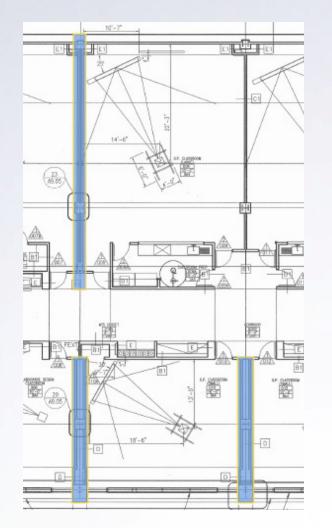
- Building Background
- Existing Building Structure
- Thesis Proposal
- Structural Redesign: Lateral
- Structural Redesign: Diaphragms
- Structural Redesign: Architectural Impacts
- Structural Redesign: Cost / Schedule Impacts
- Conclusions

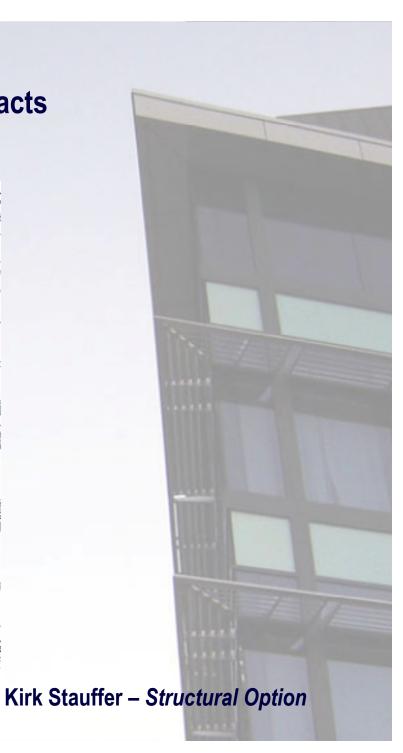


- Accomplish successful redesign with minimal changes to existing building architecture.



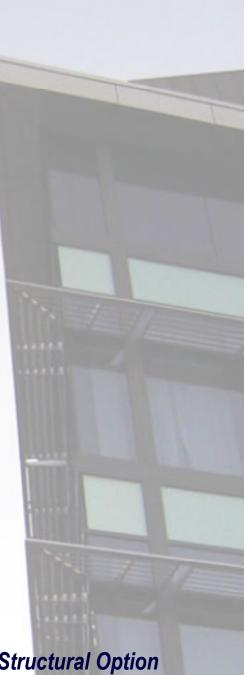
Life Sciences Building





Life Sciences Building

- Building Background
- Existing Building Structure
- Thesis Proposal
- Structural Redesign: Lateral
- Structural Redesign: Diaphragms
- Structural Redesign: Architectural Impacts
- Structural Redesign: Cost / Schedule Impacts
- Conclusions

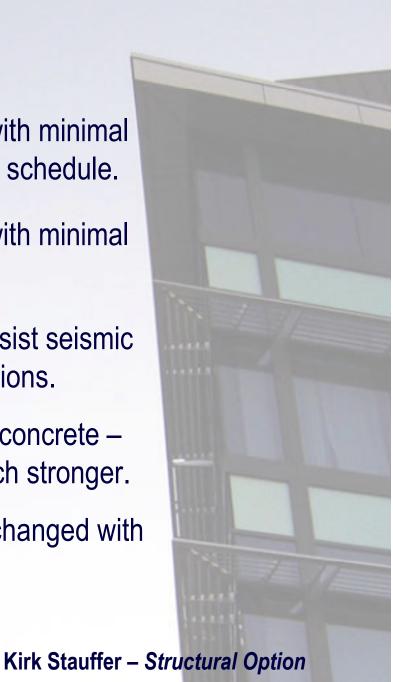

Structural Redesign: Cost / Schedule Impact

- Accomplish successful redesign with minimal changes to building cost / construction schedule.

> New Steel LFRS: \$764,496 New Concrete Shear Walls: \$161,241 Redesign (Seismic) LFRS = \$925,737

Existing (Wind) LFRS = \$612,441

Redesign LFRS = + \$313,296


Life Sciences Building

- Building Background
- Existing Building Structure
- Thesis Proposal
- Structural Redesign: Lateral
- Structural Redesign: Diaphragms
- Structural Redesign: Architectural Impacts
- Structural Redesign: Cost / Schedule Impacts
- Conclusions

Conclusions

- Accomplishes successful redesign with minimal changes to building cost / construction schedule.
- Accomplishes successful redesign with minimal changes to building architecture.
- Lateral system was redesigned to resist seismic forces with less members and connections.
- Lateral system uses more steel and concrete however the lateral system is also much stronger.
- Diaphragm assembly can be left unchanged with the addition of collector elements.

Acknowledgements

Architectural Engineering Faculty

Notably Andres Lepage, Bob Holland, Kevin Parfitt, Louis Geschwindner who worked directly with me on this thesis project.

Architectural Engineering Students

Notably Nasser Marafi, Tom Yost, Lee Ressler, and especially Phil Frederick, who constantly went out of his way to help me.

My Friends Who Are Architecture Majors

Especially Keith Labutta who was my primary consultant for anything graphic or architecture related.

Penn State Office of the Physical Plant

Especially Lisa Berkey who provided me with all of the information and insight into the Life Sciences Building for this project.

My Family and God

For making my life to this point a pleasant reality.

Questions?

Kirk Stauffer – Structural Option